(Residential Autonomous College affiliated to University of Calcutta)

RAMAKRISHNA MISSION VIDYAMANDIRA

FIRST YEAR [2018-21] B.A./B.Sc. FIRST SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018

Date : 27/09/2018 Time : 12 noon – 1pm

m Paper: I

Full Marks : 25

[Use a separate Answer Book for each group]

Group – A

Answer any three questions:						
1.	Find the values of $(1+i)^{\frac{1}{5}}$.					
2.	2. If the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ has three equal roots, then show that each of them is					
	equal to $\frac{6c-ab}{3a^2-8b}$.	5				
3.	Prove without expanding that	5				
	$\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(a+b)(b+c)(c+a)$					
4.	If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then find A^2 and show that $A^2 = A^{-1}$.	5				

5. Find the characteristic equation and eigen values of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

<u>Group – B</u>

Answer any two questions:

6. a) If the geometric mean of n_1 values of a variable x be g_1 and that of another n_2 values be g_2 , then find the geometric mean of the combined data in terms of $g_1 \& g_2$.

- b) A variable assumes the values 1, 2, ..., 7 with frequencies 1², 2², ...,7² respectively. Calculate the mean of the variable.
- 7. Suppose two groups of values of a variable x are given. If \overline{x}_1 and s_1 respectively denote the mean and standard deviation of n_1 values contained in one group and \overline{x}_2 and s_2 , the mean and

2 + 3

 (2×5)

5

standard deviation of n_2 values of the other group, then the standard deviation of the combined

group is given by
$$s^2 = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2} + \frac{n_1 n_2 (\overline{x}_1 - \overline{x}_2)^2}{(n_1 + n_2)^2}.$$
 5

8. a) The frequency distribution of a continuous variable after change of origin, is represented below:

Γ	<i>u</i> (variable):	-30	-20	-10	0	10	20	30
	<i>f</i> (frequency):	2	4	8	27	18	15	6

If the mean of the original frequency distribution is 60, find the original frequency distribution.

- × –

b) If the relation between two variables x and y is xy = 2, find the relation between harmonic mean of x and arithmetic mean of y.

3+2